MEM6810 Engineering Systems Modeling and Simulation 工程系统建模与仿真

Theory Analysis

Lecture 1: Introduction to Simulation

SHEN Haihui 沈海辉

Sino-US Global Logistics Institute Shanghai Jiao Tong University

shenhaihui.github.io/teaching/mem6810f

shenhaihui@sjtu.edu.cn

Spring 2023 (full-time)

Contents

- 1 What is Simulation?
- 2 Why Simulation?
- 3 How to Do Simulation?
- 4 Models
 - **▶** Definition
 - ► Types of Simulation Models
- 5 Examples
 - ▶ Estimate π : Buffon's Needle
 - \blacktriangleright Estimate π : Random Points
 - ► Numerical Integration
 - ► System Time to Failure
- 6 Course Outline

- What is Simulation?
- 2 Why Simulation?
- 3 How to Do Simulation?
- 4 Models
 - **▶** Definition
 - ► Types of Simulation Models
- 5 Examples
 - ▶ Estimate π : Buffon's Needle
 - \blacktriangleright Estimate π : Random Points
 - ▶ Numerical Integration
 - ▶ System Time to Failure
- **6** Course Outline

• Simulation (仿真) is the imitation of the operation of a real-world process or system over time.

- Simulation (仿真) is the imitation of the operation of a real-world process or system over time.
 - Done by hand or (usually) on a computer;
 - Involves the generation and observation of an artificial history of a system;
 - Draw inferences about the characteristics of the real system.

- Simulation (仿真) is the imitation of the operation of a real-world process or system over time.
 - Done by hand or (usually) on a computer;
 - Involves the generation and observation of an artificial history of a system;
 - Draw inferences about the characteristics of the real system.
- Simulation is EVERYWHERE!

Figure: Physical Simulation of Solid-Fluid Interaction (from Ruan et al. (2021))

Figure: Pilot Training in Boeing 787 Flat Panel Trainer (from Boeing)

Figure: Airport Simulation (by Vancouver Airport Services)
[Video: [https://www.youtube.com/watch?v=JuXwEbAvk2Q]]

Figure: Typhoon Simulation (image by Atmoz / CC BY 3.0)

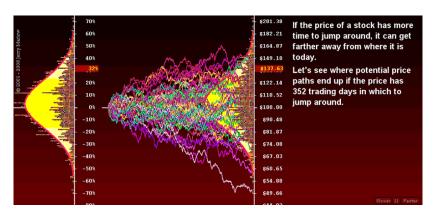


Figure: Financial Analysis

- 1 What is Simulation?
- 2 Why Simulation?
- 3 How to Do Simulation?
- 4 Models
 - **▶** Definition
 - ► Types of Simulation Models
- 5 Examples
 - ightharpoonup Estimate π : Buffon's Needle
 - \blacktriangleright Estimate π : Random Points
 - ▶ Numerical Integration
 - ▶ System Time to Failure
- 6 Course Outline

- It is often too costly or even impossible to do physical studies in reality with the actual system.
 - May be disruptive, expensive, dangerous, or rare.

- It is often too costly or even impossible to do physical studies in reality with the actual system.
 - May be disruptive, expensive, dangerous, or rare.
- The mathematical model (will be defined shortly) which can well represent the real problem, may be very difficult to solve.
 - You can only solve it with high simplification.

- It is often too costly or even impossible to do physical studies in reality with the actual system.
 - May be disruptive, expensive, dangerous, or rare.
- The mathematical model (will be defined shortly) which can well represent the real problem, may be very difficult to solve.
 - You can only solve it with high simplification.
- With simulation technique, we can easily make change and observe the effect, while keeping high fidelity.

• Simulation can be used as both an *analysis tool* and a *design tool*.

- Simulation can be used as both an *analysis tool* and a *design tool*.
- An analysis tool: To answer "what if" questions about the existing real-world system.
 - E.g., try alternative layout of a production line, try other staff shifts of a service center, test a financial system in some extreme situation, etc.
- A design tool: To study systems in the design stage, before they are built.
 - E.g., evaluate designs and operations for new transportation facilities, service organizations, manufacturing systems, etc.

- Simulation can be used as both an analysis tool and a design tool.
- An analysis tool: To answer "what if" questions about the existing real-world system.
 - E.g., try alternative layout of a production line, try other staff shifts of a service center, test a financial system in some extreme situation, etc.
- A design tool: To study systems in the design stage, before they are built.
 - E.g., evaluate designs and operations for new transportation facilities, service organizations, manufacturing systems, etc.

- Simulation can be used as both an analysis tool and a design tool.
- An analysis tool: To answer "what if" questions about the existing real-world system.
 - E.g., try alternative layout of a production line, try other staff shifts of a service center, test a financial system in some extreme situation, etc.
- A design tool: To study systems in the design stage, before they are built.
 - E.g., evaluate designs and operations for new transportation facilities, service organizations, manufacturing systems, etc.
 - Simulation is also an important type of numerical methods.

- 1 What is Simulation?
- 2 Why Simulation?
- 3 How to Do Simulation?
- 4 Models
 - **▶** Definition
 - ► Types of Simulation Models
- 5 Examples
 - **E**stimate π : Buffon's Needle
 - \blacktriangleright Estimate π : Random Points
 - ▶ Numerical Integration
 - ▶ System Time to Failure
- 6 Course Outline

How to Do Simulation?

• This is the focus of the course!

How to Do Simulation?

This is the focus of the course!

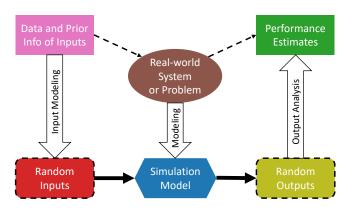


Figure: Basic Paradigm of A Simulation Study

- 1 What is Simulation?
- 2 Why Simulation?
- 3 How to Do Simulation?
- 4 Models
 - **▶** Definition
 - ► Types of Simulation Models
- 5 Examples
 - \blacktriangleright Estimate π : Buffon's Needle
 - \blacktriangleright Estimate π : Random Points
 - ► Numerical Integration
 - ➤ System Time to Failure
- **6** Course Outline

• A model is a representation of a system or problem.

Models ▶ Definition

- A model is a representation of a system or problem.
 - A set of assumptions and/or approximations about how the system works will often be imposed.

- A model is a representation of a system or problem.
 - A set of assumptions and/or approximations about how the system works will often be imposed.
 - It is only necessary to consider those aspects that affect the problem under investigation.

- A model is a representation of a system or problem.
 - A set of assumptions and/or approximations about how the system works will often be imposed.
 - It is only necessary to consider those aspects that affect the problem under investigation.
 - However, the model should be sufficiently detailed to draw *valid* conclusions about the real system or problem.

- A model is a representation of a system or problem.
 - A set of assumptions and/or approximations about how the system works will often be imposed.
 - It is only necessary to consider those aspects that affect the problem under investigation.
 - However, the model should be sufficiently detailed to draw *valid* conclusions about the real system or problem.
 - The trade-off: simplicity vs. accuracy.

- A model is a representation of a system or problem.
 - A set of assumptions and/or approximations about how the system works will often be imposed.
 - It is only necessary to consider those aspects that affect the problem under investigation.
 - However, the model should be sufficiently detailed to draw *valid* conclusions about the real system or problem.
 - The trade-off: simplicity vs. accuracy.
- Physical model vs. Mathematical model

- A model is a representation of a system or problem.
 - A set of assumptions and/or approximations about how the system works will often be imposed.
 - It is only necessary to consider those aspects that affect the problem under investigation.
 - However, the model should be sufficiently detailed to draw *valid* conclusions about the real system or problem.
 - The trade-off: simplicity vs. accuracy.
- Physical model vs. Mathematical model
 - 1 Physical model is a scaled-down (or -up) version of the system.

- A model is a representation of a system or problem.
 - A set of assumptions and/or approximations about how the system works will often be imposed.
 - It is only necessary to consider those aspects that affect the problem under investigation.
 - However, the model should be sufficiently detailed to draw *valid* conclusions about the real system or problem.
 - The trade-off: simplicity vs. accuracy.
- Physical model vs. Mathematical model
 - 1 Physical model is a scaled-down (or -up) version of the system.
 - 2 Mathematical model uses symbolic notation and mathematical equations to represent the system.

- A model is a representation of a system or problem.
 - A set of assumptions and/or approximations about how the system works will often be imposed.
 - It is only necessary to consider those aspects that affect the problem under investigation.
 - However, the model should be sufficiently detailed to draw *valid* conclusions about the real system or problem.
 - The trade-off: simplicity vs. accuracy.
- Physical model vs. Mathematical model
 - 1 Physical model is a scaled-down (or -up) version of the system.
 - 2 Mathematical model uses symbolic notation and mathematical equations to represent the system.
- Instead of doing physical studies with the actual system in real world, we can study the model.

- A model is a representation of a system or problem.
 - A set of assumptions and/or approximations about how the system works will often be imposed.
 - It is only necessary to consider those aspects that affect the problem under investigation.
 - However, the model should be sufficiently detailed to draw *valid* conclusions about the real system or problem.
 - The trade-off: simplicity vs. accuracy.
- Physical model vs. Mathematical model
 - **1** Physical model is a scaled-down (or -up) version of the system.
 - Mathematical model uses symbolic notation and mathematical equations to represent the system.
- Instead of doing physical studies with the actual system in real world, we can study the model.
 - It will be much easier, faster, cheaper, and safer!

- A model is a representation of a system or problem.
 - A set of assumptions and/or approximations about how the system works will often be imposed.
 - It is only necessary to consider those aspects that affect the problem under investigation.
 - However, the model should be sufficiently detailed to draw *valid* conclusions about the real system or problem.
 - The trade-off: simplicity vs. accuracy.
- Physical model vs. Mathematical model
 - 1 Physical model is a scaled-down (or -up) version of the system.
 - Mathematical model uses symbolic notation and mathematical equations to represent the system.
- Instead of doing physical studies with the actual system in real world, we can study the model.
 - It will be much easier, faster, cheaper, and safer!
- A simulation model is a particular type of mathematical model.

SHEN Haihui

66 All models are wrong, but some are useful. 99

— George E. P. Box

All models are wrong, but some are useful. 99

— George E. P. Box

George E. P. Box (1919.10 – 2013.03) was a British statistician, who worked in the areas of quality control, time-series analysis, design of experiments, and Bayesian inference. He has been called "one of the great statistical minds of the 20th century".

- When a mathematical model is simple enough, we can solve it
 - analytically, with mathematical tools like algebra, calculus, probability theory;
 - *numerically*, with computational procedures (e.g., solving a quintic equation).

- When a mathematical model is simple enough, we can solve it
 - analytically, with mathematical tools like algebra, calculus, probability theory;
 - *numerically*, with computational procedures (e.g., solving a quintic equation).
- But not all mathematical models can be "solved".

- When a mathematical model is simple enough, we can solve it
 - analytically, with mathematical tools like algebra, calculus, probability theory;
 - *numerically*, with computational procedures (e.g., solving a quintic equation).
- But not all mathematical models can be "solved".
- In simulation, the mathematical models (more specifically, simulation models) are run rather than solved:

- When a mathematical model is simple enough, we can solve it
 - analytically, with mathematical tools like algebra, calculus, probability theory;
 - *numerically*, with computational procedures (e.g., solving a quintic equation).
- But not all mathematical models can be "solved".
- In simulation, the mathematical models (more specifically, simulation models) are run rather than solved:
 - Artificial history of the system is generated from the model assumptions;
 - Observations of system status are collected for analysis;
 - System performance measures are estimated.

- When a mathematical model is simple enough, we can solve it
 - analytically, with mathematical tools like algebra, calculus, probability theory;
 - *numerically*, with computational procedures (e.g., solving a quintic equation).
- But not all mathematical models can be "solved".
- In simulation, the mathematical models (more specifically, simulation models) are run rather than solved:
 - Artificial history of the system is generated from the model assumptions;
 - Observations of system status are collected for analysis;
 - System performance measures are estimated.
- Essentially, running simulation is still one type of numerical methods
 - Real-world simulation models can be large, and such runs are usually conducted with the aid of a computer.

 Simulation models may be classified as being static or dynamic.

- Simulation models may be classified as being static or dynamic.
- ① Static: Time does not play a natural role.

- Simulation models may be classified as being static or dynamic.
- 1 Static: Time does not play a natural role.
 - Example 1 Finance: evaluate portfolio return and risk.
 - Example 2 Project Management: evaluate projects payoff in different scenarios.

- Simulation models may be classified as being static or dynamic.
- 1 Static: Time does not play a natural role.
 - Example 1 Finance: evaluate portfolio return and risk.
 - Example 2 Project Management: evaluate projects payoff in different scenarios.
 - Sometimes called Monte Carlo (蒙特卡洛) simulation.

Figure: Monte Carlo Casino (photo by Cristian Lorini / CC BY-SA 3.0)

Figure: Monte Carlo Casino (photo by Cristian Lorini / CC BY-SA 3.0)

Figure: Monte Carlo Casino (photo by Cristian Lorini / CC BY-SA 3.0)

- Simulation models may be classified as being static or dynamic.
- 1 Static: Time does not play a natural role.
 - Example 1 Finance: evaluate portfolio return and risk.
 - Example 2 Project Management: evaluate projects payoff in different scenarios.
 - Sometimes called Monte Carlo (蒙特卡洛) simulation.

- Simulation models may be classified as being static or dynamic.
- 1 Static: Time does not play a natural role.
 - Example 1 Finance: evaluate portfolio return and risk.
 - Example 2 Project Management: evaluate projects payoff in different scenarios.
 - Sometimes called Monte Carlo (蒙特卡洛) simulation.
 - Often used in the complex numerical calculation in financial engineering (金融工程), computational physics, etc.
- 2 Dynamic: Time does play a natural role.

- Simulation models may be classified as being static or dynamic.
- 1 Static: Time does not play a natural role.
 - Example 1 Finance: evaluate portfolio return and risk.
 - Example 2 Project Management: evaluate projects payoff in different scenarios.
 - Sometimes called Monte Carlo (蒙特卡洛) simulation.
 - Often used in the complex numerical calculation in financial engineering (金融工程), computational physics, etc.
- 2 Dynamic: Time does play a natural role.
 - Example 1 Logistics Management: evaluate the efficiency of a terminal
 - Example 2 Service Management: evaluate waiting time of customers under different staff shifts

- Simulation models may be classified as being static or dynamic.
- 1 Static: Time does not play a natural role.
 - Example 1 Finance: evaluate portfolio return and risk.
 - Example 2 Project Management: evaluate projects payoff in different scenarios.
 - Sometimes called Monte Carlo (蒙特卡洛) simulation.
 - Often used in the complex numerical calculation in financial engineering (金融工程), computational physics, etc.
- 2 Dynamic: Time does play a natural role.
 - Example 1 Logistics Management: evaluate the efficiency of a terminal.
 - Example 2 Service Management: evaluate waiting time of customers under different staff shifts
 - Often used to simulate the logistics/transportation/service systems, whose status naturally changes over time.

 Simulation models may be classified as being deterministic or stochastic.

- Simulation models may be classified as being deterministic or stochastic.
- 1 Deterministic: Everything is known with certainty.

2 Stochastic: Uncertainty exists.

- Simulation models may be classified as being deterministic or stochastic.
- 1 Deterministic: Everything is known with certainty.
 - E.g., patients arrive at a hospital precisely on schedule, the service time is precisely fixed, the transfer among different units is pre-determined.
- 2 Stochastic: Uncertainty exists.

- Simulation models may be classified as being deterministic or stochastic.
- 1 Deterministic: Everything is known with certainty.
 - E.g., patients arrive at a hospital precisely on schedule, the service time is precisely fixed, the transfer among different units is pre-determined.
- 2 Stochastic: Uncertainty exists.
 - E.g., arrival times and service times of patients have random variations, the transfer is random.

- Simulation models may be classified as being deterministic or stochastic.
- 1 Deterministic: Everything is known with certainty.
 - E.g., patients arrive at a hospital precisely on schedule, the service time is precisely fixed, the transfer among different units is pre-determined.
- 2 Stochastic: Uncertainty exists.
 - E.g., arrival times and service times of patients have random variations, the transfer is random.
 - Used much more often (uncertainty is more or less involved in a real-world system).

 Simulation models may be classified as being discrete or continuous.

- Simulation models may be classified as being discrete or continuous.
- 1 Discrete: System states change only at discrete time points.

2 Continuous: System states change **continuously** over time.

- Simulation models may be classified as being discrete or continuous.
- 1 Discrete: System states change only at discrete time points.
 - E.g., the number of customers in the bank, changes only when a customer arrives or leaves after service (*left fig*).
- 2 Continuous: System states change continuously over time.

- Simulation models may be classified as being discrete or continuous.
- 1 Discrete: System states change only at discrete time points.
 - E.g., the number of customers in the bank, changes only when a customer arrives or leaves after service (*left fig*).
- 2 Continuous: System states change continuously over time.

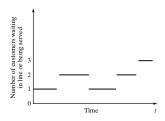


Figure: Discrete State (from Banks et al. (2010))

- Simulation models may be classified as being discrete or continuous.
- 1 Discrete: System states change only at discrete time points.
 - E.g., the number of customers in the bank, changes only when a customer arrives or leaves after service (*left fig*).
- 2 Continuous: System states change continuously over time.
 - E.g., the head of water (水位) behind a dam changes continuously during a period of time (*right fig*).

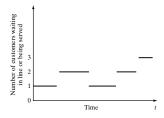
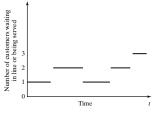
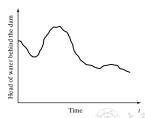


Figure: Discrete State (from Banks et al. (2010))

- Simulation models may be classified as being discrete or continuous.
- ① Discrete: System states change only at **discrete** time points.
 - E.g., the number of customers in the bank, changes only when a customer arrives or leaves after service (*left fig*).
- 2 Continuous: System states change continuously over time.
 - E.g., the head of water (水位) behind a dam changes continuously during a period of time (*right fig*).





• In summary, simulation models may be classified as being static or dynamic, deterministic or stochastic, and discrete or continuous.

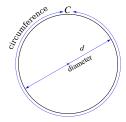
- In summary, simulation models may be classified as being static or dynamic, deterministic or stochastic, and discrete or continuous.
- For most operational decision-making problems, the suitable simulation models are *dynamic*, *stochastic* and *discrete*.

- In summary, simulation models may be classified as being static or dynamic, deterministic or stochastic, and discrete or continuous.
- For most operational decision-making problems, the suitable simulation models are *dynamic*, *stochastic* and *discrete*.
 - The simulation is called Discrete-Event System Simulation (离散事件系统仿真).
 - It is the main **focus** of this course.

- 1 What is Simulation?
- 2 Why Simulation?
- 3 How to Do Simulation?
- 4 Models
 - **▶** Definition
 - ► Types of Simulation Models
- 5 Examples
 - ▶ Estimate π : Buffon's Needle
 - \blacktriangleright Estimate π : Random Points
 - ► Numerical Integration
 - ▶ System Time to Failure
- 6 Course Outline

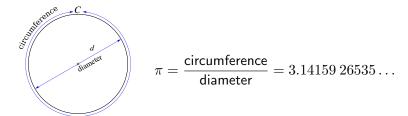
• The mathematical constant π , is originally defined as the ratio of circle's circumference to its diameter.

• The mathematical constant π , is originally defined as the ratio of circle's circumference to its diameter.



$$\pi = \frac{\mathsf{circumference}}{\mathsf{diameter}} = 3.14159\ 26535\dots$$

• The mathematical constant π , is originally defined as the ratio of circle's circumference to its diameter.



• It was considered as a quite difficult problem in the history of mankind to find the value of π .

- The earliest written approximations of π :
 - Babylon: A clay tablet (1900–1600 BC), $\pi \approx \frac{25}{8} = 3.125$;
 - Egypt: The Rhind Papyrus (莱因德纸草书, 1650 BC, 1850 BC), $\pi \approx (\frac{16}{9})^2 = 3.160...$

- The earliest written approximations of π :
 - Babylon: A clay tablet (1900–1600 BC), $\pi \approx \frac{25}{8} = 3.125$;
 - Egypt: The Rhind Papyrus (莱因德纸草书, 1650 BC, 1850 BC), $\pi \approx (\frac{16}{9})^2 = 3.160...$

Figure: Archimedes of Syracuse (287–212 BC) (Source/Photographer

$$\frac{223}{71} < \pi < \frac{22}{7}$$
 $\frac{223}{71} = 3.1408...$
 $\frac{22}{7} = 3.1428...$

- The earliest written approximations of π :
 - Babylon: A clay tablet (1900–1600 BC), $\pi \approx \frac{25}{8} = 3.125$;
 - Egypt: The Rhind Papyrus (莱因德纸草书, 1650 BC, 1850 BC), $\pi \approx (\frac{16}{9})^2 = 3.160...$

Figure: Archimedes of Syracuse (287–212 BC) (Source/Photographer

$$\frac{223}{71} < \pi < \frac{22}{7}$$

 $\frac{223}{71} = 3.1408...$
 $\frac{22}{7} = 3.1428...$

Figure: Liu Hui (刘徽, 魏晋时期, 225-295 AD)

$$\pi \approx 3.1416$$

- The earliest written approximations of π :
 - Babylon: A clay tablet (1900–1600 BC), $\pi \approx \frac{25}{8} = 3.125$;
 - Egypt: The Rhind Papyrus (莱因德纸草书, 1650 BC, 1850 BC), $\pi \approx (\frac{16}{9})^2 = 3.160...$

Figure: Archimedes of Syracuse (287–212 BC) (Source/Photographer)

$$\begin{array}{l} \frac{223}{71} < \pi < \frac{22}{7} \\ \frac{223}{71} = 3.1408... \\ \frac{22}{7} = 3.1428... \end{array}$$

Figure: Liu Hui (刘徽, 魏晋时期, 225-295 AD)

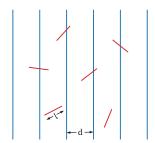
 $\pi \approx 3.1416$

Figure: Zu Chongzhi (祖冲之, 南北朝时期, 429–500 AD) (statue image) by 三错 / (CC BY 4.0)

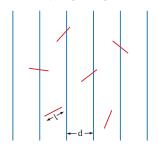
$$\pi \approx \frac{355}{113} = 3.14159 \ 292...$$
 承女 4 大学

- Buffon's Needle (布丰投针)
 - Buffon, a French mathematician, in 1733 (1777) did a static simulation (by hand), which can be used to estimate π .

- Buffon's Needle (布丰投针)
 - Buffon, a French mathematician, in 1733 (1777) did a static simulation (by hand), which can be used to estimate π .
 - Drop a needle of length l onto the floor with parallel lines d apart, where l < d.
 - Suppose the needle is equally likely to fall anywhere.



- Buffon's Needle (布丰投针)
 - Buffon, a French mathematician, in 1733 (1777) did a static simulation (by hand), which can be used to estimate π .
 - Drop a needle of length l onto the floor with parallel lines d apart, where l < d.
 - Suppose the needle is equally likely to fall anywhere.



• $\mathbb{P}(\text{needle crosses a line}) = \frac{2l}{\pi d}$.

If Buffon repeats the experiment for n times (i.e., drops n needles), and let h denote the number of needles crossing a line, then,

$$\mathbb{P}(\text{needle crosses a line}) = \frac{2l}{\pi d} \approx \frac{h}{n}.$$

• So,
$$\pi \approx \frac{2ln}{dh}$$
.

• If Buffon repeats the experiment for n times (i.e., drops n needles), and let h denote the number of needles crossing a line, then,

$$\mathbb{P}(\text{needle crosses a line}) = \frac{2l}{\pi d} \approx \frac{h}{n}.$$

- So, $\pi pprox rac{2ln}{dh}$.
- Let d=2l, then $\pi \approx n/h$.

• If Buffon repeats the experiment for n times (i.e., drops n needles), and let h denote the number of needles crossing a line, then,

$$\mathbb{P}(\text{needle crosses a line}) = \frac{2l}{\pi d} \approx \frac{h}{n}.$$

- So, $\pi pprox rac{2ln}{dh}$.
- Let d=2l, then $\pi \approx n/h$.
- The approximation gets more and more accurate when n increases.

If Buffon repeats the experiment for n times (i.e., drops n needles), and let h denote the number of needles crossing a line, then,

$$\mathbb{P}(\text{needle crosses a line}) = \frac{2l}{\pi d} \approx \frac{h}{n}.$$

- So, $\pi pprox rac{2ln}{dh}$.
- Let d=2l, then $\pi \approx n/h$.
- The approximation gets more and more accurate when n increases.

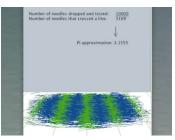
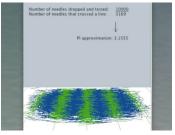


Figure: A Computer Simulation (by Jeffrey Ventrella)
[Video: https://www.youtube.com/watch?v=kazgQXae0Hk]

• If Buffon repeats the experiment for n times (i.e., drops n needles), and let h denote the number of needles crossing a line, then,

$$\mathbb{P}(\text{needle crosses a line}) = \frac{2l}{\pi d} \approx \frac{h}{n}.$$

- So, $\pi pprox rac{2ln}{dh}$.
- Let d=2l, then $\pi \approx n/h$.
- The approximation gets more and more accurate when n increases.



• Try it out!

Figure: A Computer Simulation (by Jeffrey Ventrella)
[Video: https://www.youtube.com/watch?v=kazgQXaeOHk

https://mste.illinois.edu/activity/buffon http://datagenetics.com/blog/may42015/index.html

Examples

ightharpoonup Estimate π : Random Points

• Now consider another simulation to estimate π .

Examples

ightharpoonup Estimate π : Random Points

- Now consider another simulation to estimate π .
 - Randomly throw n dots to a square.

- Now consider another simulation to estimate π .
 - ullet Randomly throw n dots to a square.
 - Suppose the dots are *equally likely* to fall anywhere inside the square.
 - Let h denote the number of dots in the circular sector.

- Now consider another simulation to estimate π .
 - Randomly throw n dots to a square.
 - Suppose the dots are equally likely to fall anywhere inside the square.
 - Let h denote the number of dots in the circular sector.

 $\bullet \ \, \mathbb{P}(\text{dot in sector}) = \frac{\text{sector area}}{\text{square area}} = \frac{\pi d^2/4}{d^2} \approx \frac{h}{n}.$

- Now consider another simulation to estimate π .
 - ullet Randomly throw n dots to a square.
 - Suppose the dots are *equally likely* to fall anywhere inside the square.
 - Let h denote the number of dots in the circular sector.

 $\bullet \ \mathbb{P}(\text{dot in sector}) = \frac{\text{sector area}}{\text{square area}} = \frac{\pi d^2/4}{d^2} \approx \frac{h}{n}. \quad \Rightarrow \ \pi \approx \frac{4h}{n}.$

- Now consider another simulation to estimate π .
 - ullet Randomly throw n dots to a square.
 - Suppose the dots are equally likely to fall anywhere inside the square.
 - Let h denote the number of dots in the circular sector.

Figure: Animation (image by nicoguaro / CC BY 3.0)

 $\bullet \ \mathbb{P}(\text{dot in sector}) = \frac{\text{sector area}}{\text{square area}} = \frac{\pi d^2/4}{d^2} \approx \frac{h}{n}. \quad \Rightarrow \ \pi \approx \frac{4h}{n}.$

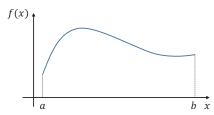
- Now consider another simulation to estimate π .
 - Randomly throw n dots to a square.
 - Suppose the dots are equally likely to fall anywhere inside the square.
 - Let h denote the number of dots in the circular sector.

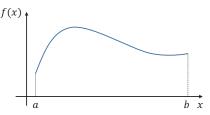
Figure: Animation (image by nicoguaro / CC BY 3.0)

- $\bullet \ \ \mathbb{P}(\text{dot in sector}) = \frac{\text{sector area}}{\text{square area}} = \frac{\pi d^2/4}{d^2} \approx \frac{h}{n}. \quad \Rightarrow \ \pi \approx \frac{4h}{n}.$
- Visit https://xiaoweiz.shinyapps.io/calPi for interaction.

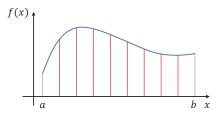
Examples

Examples

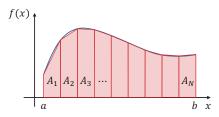




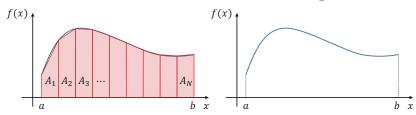
• Trapezoidal rule (梯形法):



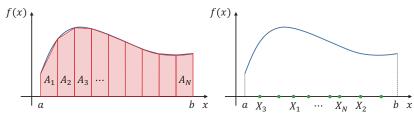
- Trapezoidal rule (梯形法):
 - lacksquare Divide the area into N parts.



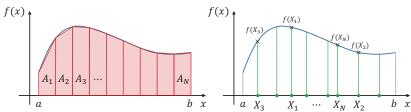
- Trapezoidal rule (梯形法):
 - lacksquare Divide the area into N parts.



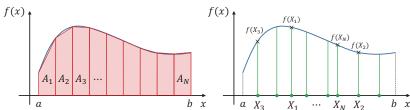
- Trapezoidal rule (梯形法) (left fig):
 - lacksquare Divide the area into N parts.
 - **2** $\int_a^b f(x) dx \approx A_1 + A_2 + \dots + A_N$.
- Monte Carlo method (right fig):



- Trapezoidal rule (梯形法) (left fig):
 - lacksquare Divide the area into N parts.
 - **2** $\int_a^b f(x) dx \approx A_1 + A_2 + \dots + A_N$.
- Monte Carlo method (right fig):
 - **1** Randomly sample N points on [a, b] from uniform(a, b).



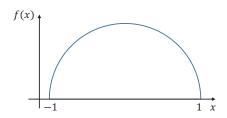
- Trapezoidal rule (梯形法) (left fig):
 - lacksquare Divide the area into N parts.
 - **2** $\int_a^b f(x) dx \approx A_1 + A_2 + \dots + A_N$.
- Monte Carlo method (right fig):
 - **1** Randomly sample N points on [a, b] from uniform(a, b).



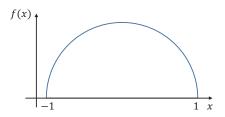
- Trapezoidal rule (梯形法) (left fig):
 - lacksquare Divide the area into N parts.
 - **2** $\int_a^b f(x) dx \approx A_1 + A_2 + \dots + A_N$.
- Monte Carlo method (right fig):
 - **1** Randomly sample N points on [a, b] from uniform(a, b).
- Monte Carlo method will be much more **efficient** when the dimension is high! (E.g., $\int_{[a,b]^d} f(x) dx$ for large d.)

• Recall the numerical integration problem $\int_a^b f(x) \mathrm{d}x.$

- Recall the numerical integration problem $\int_a^b f(x) dx$.
- Let $f(x) = \sqrt{1-x^2}$, a = -1, b = 1.

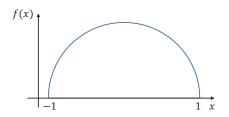


- Recall the numerical integration problem $\int_a^b f(x) dx$.
- Let $f(x) = \sqrt{1-x^2}$, a = -1, b = 1.



• Then, $\int_{-1}^{1} \sqrt{1 - x^2} dx = \pi/2$.

- Recall the numerical integration problem $\int_a^b f(x) dx$.
- Let $f(x) = \sqrt{1-x^2}$, a = -1, b = 1.



- Then, $\int_{-1}^{1} \sqrt{1-x^2} dx = \pi/2$.
- So we have another way to estimate π using Monte Carlo simulation (provided we know how to compute square root).

- There is a system:
 - Two components work as active and spare, so the system fails if both components are failed.
 - Suppose the time to next component failure is random (when there is at least one functional components), which follows a known distribution, and we know how to generate it.
 - To make it simple, suppose the time to next failure is equally likely 1, 2, 3, 4, 5 or 6 days (no memory).
 - Repair takes exactly 2.5 days (only one at a time).

- There is a system:
 - Two components work as active and spare, so the system fails if both components are failed.
 - Suppose the time to next component failure is random (when there is at least one functional components), which follows a known distribution, and we know how to generate it.
 - To make it simple, suppose the time to next failure is equally likely 1, 2, 3, 4, 5 or 6 days (no memory).
 - Repair takes exactly 2.5 days (only one at a time).
- What can we say about the time to failure for this system?

- There is a system:
 - Two components work as active and spare, so the system fails if both components are failed.
 - Suppose the time to next component failure is random (when there is at least one functional components), which follows a known distribution, and we know how to generate it.
 - To make it simple, suppose the time to next failure is equally likely 1, 2, 3, 4, 5 or 6 days (no memory).
 - Repair takes exactly 2.5 days (only one at a time).
- What can we say about the time to failure for this system?
- Let's run a simulation by hand!
 - Let the system state denote the number of functional components.
 - The **events** are the failure of a component and the completion of repair.

		Event Calendar		
Clock	System State	Next Failure	Next Repair	
0	2			

		Event Calendar		
Clock	System State	Next Failure	Next Repair	
0	2	0 + 5 = 5		

		Event Calendar		
Clock	System State	Next Failure	Next Repair	
0	2	0 + 5 = 5	∞	

	_	Calendar	
Clock	System State	Next Failure	Next Repair
0	2	0 + 5 = 5	∞
5	1		

	_	Event Calendar		
Clock	System State	Next Failure	Next Repair	
0	2	0 + 5 = 5	∞	
5	1		5 + 2.5 = 7.5	

		Event Calendar		
Clock	System State	Next Failure	Next Repair	
0	2	0 + 5 = 5	∞	
5	1	5 + 3 = 8	5 + 2.5 = 7.5	

		Event Calendar		
Clock	System State	Next Failure	Next Repair	
0	2	0 + 5 = 5	∞	
5	1	5 + 3 = 8	5 + 2.5 = 7.5	
7.5	9			

		Event Calendar		
Clock	System State	Next Failure	Next Repair	
0	2	0 + 5 = 5	∞	
5	1	5 + 3 = 8	5 + 2.5 = 7.5	
7.5	2		∞	

		Event Calendar		
Clock	System State	Next Failure	Next Repair	
0	2	0 + 5 = 5	∞	
5	1	5 + 3 = 8	5 + 2.5 = 7.5	
7.5	2	8	∞	

	_	Event	Calendar
Clock	System State	Next Failure	Next Repair
0	2	0 + 5 = 5	∞
5	1	5 + 3 = 8	5 + 2.5 = 7.5
7.5	2	8	∞
8	1		

		Event	Calendar
Clock	System State	Next Failure	Next Repair
0	2	0 + 5 = 5	∞
5	1	5 + 3 = 8	5 + 2.5 = 7.5
7.5	2	8	∞
8	1		8 + 2.5 = 10.5

		Event	Calendar
Clock	System State	Next Failure	Next Repair
0	2	0 + 5 = 5	∞
5	1	5 + 3 = 8	5 + 2.5 = 7.5
7.5	2	8	∞
8	1	8 + 6 - 14	8 + 25 - 105

		Event	Calendar
Clock	System State	Next Failure	Next Repair
0	2	0 + 5 = 5	∞
5	1	5 + 3 = 8	5 + 2.5 = 7.5
7.5	2	8	∞
8	1	8 + 6 = 14	8 + 2.5 = 10.5
10.5	2		

		Event	Calendar
Clock	System State	Next Failure	Next Repair
0	2	0 + 5 = 5	∞
5	1	5 + 3 = 8	5 + 2.5 = 7.5
7.5	2	8	∞
8	1	8 + 6 = 14	8 + 2.5 = 10.5
10.5	2		∞

		Event Calendar	
Clock	System State	Next Failure	Next Repair
0	2	0 + 5 = 5	∞
5	1	5 + 3 = 8	5 + 2.5 = 7.5
7.5	2	8	∞
8	1	8 + 6 = 14	8 + 2.5 = 10.5
10.5	2	14	∞

		Event Calendar	
Clock	System State	Next Failure	Next Repair
0	2	0 + 5 = 5	∞
5	1	5 + 3 = 8	5 + 2.5 = 7.5
7.5	2	8	∞
8	1	8 + 6 = 14	8 + 2.5 = 10.5
10.5	2	14	∞
14	1		

		Event	Calendar
Clock	System State	Next Failure	Next Repair
0	2	0 + 5 = 5	∞
5	1	5 + 3 = 8	5 + 2.5 = 7.5
7.5	2	8	∞
8	1	8 + 6 = 14	8 + 2.5 = 10.5
10.5	2	14	∞
14	1		14 + 2.5 = 16.5

	_	Event Calendar	
Clock	System State	Next Failure	Next Repair
0	2	0 + 5 = 5	∞
5	1	5 + 3 = 8	5 + 2.5 = 7.5
7.5	2	8	∞
8	1	8 + 6 = 14	8 + 2.5 = 10.5
10.5	2	14	∞
14	1	14 + 1 = 15	14 + 2.5 = 16.5
15	0		

	_	Event	Calendar
Clock	System State	Next Failure	Next Repair
0	2	0 + 5 = 5	∞
5	1	5 + 3 = 8	5 + 2.5 = 7.5
7.5	2	8	∞
8	1	8 + 6 = 14	8 + 2.5 = 10.5
10.5	2	14	∞
14	1	14 + 1 = 15	14 + 2.5 = 16.5
15	0		16.5

		Event	Calendar
Clock	System State	Next Failure	Next Repair
0	2	0 + 5 = 5	∞
5	1	5 + 3 = 8	5 + 2.5 = 7.5
7.5	2	8	∞
8	1	8 + 6 = 14	8 + 2.5 = 10.5
10.5	2	14	∞
14	1	14 + 1 = 15	14 + 2.5 = 16.5
15	0	∞	16.5

		Event	Calendar
Clock	System State	Next Failure	Next Repair
0	2	0 + 5 = 5	∞
5	1	5 + 3 = 8	5 + 2.5 = 7.5
7.5	2	8	∞
8	1	8 + 6 = 14	8 + 2.5 = 10.5
10.5	2	14	∞
14	1	14 + 1 = 15	14 + 2.5 = 16.5
15	0	∞	16.5

		Event	Calendar
Clock	System State	Next Failure	Next Repair
0	2	0 + 5 = 5	∞
5	1	5 + 3 = 8	5 + 2.5 = 7.5
7.5	2	8	∞
8	1	8 + 6 = 14	8 + 2.5 = 10.5
10.5	2	14	∞
14	1	14 + 1 = 15	14 + 2.5 = 16.5
15	0	∞	16.5

- We can observe:
 - Time to failure =15
 - Average number of functional components =

$$\frac{1}{15-0} \left[2(5-0) + 1(7.5-5) + 2(8-7.5) + 1(10.5-8) + 2(14-10.5) + 1(15-14) \right] = \frac{24}{15}$$

		Event	Calendar
Clock	System State	Next Failure	Next Repair
0	2	0 + 5 = 5	∞
5	1	5 + 3 = 8	5 + 2.5 = 7.5
7.5	2	8	∞
8	1	8 + 6 = 14	8 + 2.5 = 10.5
10.5	2	14	∞
14	1	14 + 1 = 15	14 + 2.5 = 16.5
15	0	∞	16.5

We can observe:

- Time to failure = 15
- Average number of functional components =

$$\begin{array}{l} \frac{1}{15-0} \left[2(5-0) + 1(7.5-5) + 2(8-7.5) + 1(10.5-8) + 2(14-10.5) + 1(15-14) \right] \\ - \frac{24}{15-0} \left[2(5-0) + 1(7.5-5) + 2(8-7.5) + 1(10.5-8) + 2(14-10.5) + 1(15-14) \right] \end{array}$$

- Some questions:
 - How to deal with the randomness?
 - How to generate the time interval of component failure?

- 1 What is Simulation?
- 2 Why Simulation?
- 3 How to Do Simulation?
- 4 Models
 - **▶** Definition
 - ► Types of Simulation Models
- 5 Examples
 - ▶ Estimate π : Buffon's Needle
 - \triangleright Estimate π : Random Points
 - ▶ Numerical Integration
 - ➤ System Time to Failure
- 6 Course Outline

Course Outline

- Introduction to Simulation
- Elements of Probability and Statistics
- Queueing Models
- Random Variate Generation
- Input Modeling
- Verification and Validation of Simulation Models
- Output Analysis I: Single Model
- Simulation in Excel and FlexSim
- Output Analysis II: Comparison
- Output Analysis III: Optimization

